PageRank as a Markov Chain
Sergy Brin and Larry Page developed PageRank as a way to rank the importance of a webpage on the internet based on the counted number of links to it. For example, consider the following internet:
\(\require{color}\definecolor{teall}{RGB}{58, 171, 174} \definecolor{bluemoon}{RGB}{62, 71, 125} \definecolor{redhot}{RGB}{255, 145, 115} \definecolor{periwinkle}{RGB}{159, 160, 255} \definecolor{purpley}{RGB}{31, 35, 255} \definecolor{gween}{RGB}{73, 175, 129} \definecolor{pinky}{RGB}{251, 109, 134} \definecolor{pinky2}{RGB}{241, 67, 192} \definecolor{maglav}{RGB}{241, 167, 254}\)
Let each state be a webpage, and a transition from one state to another is a link from one webpage to another. If a random user is at website \(\bf 1\), then there’s a \(\tfrac{1}{3}\) probability of moving to the websites \(\bf 2, 3,\) and \(\bf 6\), respectively. The transition matrix of the corresponding Markov chain is:
\[ P = \mathit{\large\begin{matrix}\bf\color{redhot}1 \\ \bf\color{redhot}2 \\ \bf\color{redhot}3 \\ \bf\color{redhot}4 \\ \bf\color{redhot}5 \\ \bf\color{redhot}6 \end{matrix}} \begin{pmatrix}0 & \frac{1}{4} & \frac{1}{2} & 0 & 0 & 0\\\frac{1}{3} & 0 & 0 & 0 & 0 & \frac{1}{2}\\\frac{1}{3} & \frac{1}{4} & 0 & 0 & \frac{1}{2} & 0\\0 & \frac{1}{4} & \frac{1}{2} & 0 & 0 & 0\\0 & \frac{1}{4} & 0 & \frac{1}{2} & 0 & \frac{1}{2}\\\frac{1}{3} & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0\end{pmatrix} \]
Regular Stochastic Matrix and Periodicity
First we will show that matrix \(P\) is a regular stochastic matrix based on the following definitions:
Definition 1.0. A vector is called a probability vector if its entries are nonnegative and sum to \(1\). A matrix is column/row stochastic if and only if its columns/rows are probability vectors.
Definition 1.1. A stochastic matrix \(P\) is regular if there is some \(k \gt 0\) for which all the entries in \(P^k\) are positive.
Observation. It follows from the definitions that any regular matrix is transitive.
Matrix \(P\) is a nonnegative matrix since every entry \(p_{ij}\geq 0\). The columns of matrix \(P\) sum to \(1\); so, each column is a probability vector and hence the matrix is called column stochastic. The matrices \(P_n\) are regular as seen by observing powers of \(P\): e.g. for \(n = 3\), \[ \small P^3 = \begin{pmatrix}\frac{1}{12} & \frac{1}{8} & \frac{1}{8} & \frac{3}{16} & \frac{1}{16} & \frac{3}{16}\\\frac{1}{12} & \frac{5}{24} & \frac{5}{24} & \frac{1}{8} & \frac{1}{12} & \frac{1}{6}\\\frac{1}{4} & \frac{1}{8} & \frac{1}{6} & \frac{3}{16} & \frac{13}{48} & \frac{5}{48}\\\frac{1}{12} & \frac{1}{8} & \frac{1}{8} & \frac{3}{16} & \frac{1}{16} & \frac{3}{16}\\\frac{1}{6} & \frac{1}{4} & \frac{1}{4} & \frac{3}{16} & \frac{3}{16} & \frac{3}{16}\\\frac{1}{3} & \frac{1}{6} & \frac{1}{8} & \frac{1}{8} & \frac{1}{3} & \frac{1}{6}\end{pmatrix} \]
which is positive. Hence, there exists \(k = 3\) for which all the entries in \(P^3\) are positive (\(p_{ij} \gt 0\)). Hence, \(P\) is regular and hence transitive.
Next we will show that matrix \(P\) is aperiodic based on the following definition:
Definition 3.5. Let \(A\) be a nonnegative matrix. The \(A-\text{periodicity}\) of the index \(j\) is the greatest common divisor of all the return times for index \(j\); alternatively the \(A-\text{periodicity}\) of the index \(j\) is the greatest common divisor of all \(m\in \mathbb{N}\) with \((A^m)_{jj} \neq 0\). An index \(j\) is aperiodic if it has periodicity \(1\).
We will show that each index \(j\) with \((P^m)_{jj}\) has periodicity \(1\) and hence is aperiodic. Computing the greatest common divisor of all the return times:
\[ \begin{align} P^2 = \begin{pmatrix} \bf\color{pinky2}{\frac{1}{4}} & \frac{1}{8} & 0 & 0 & \frac{1}{4} & \frac{1}{8} \\ \frac{1}{6} & \bf\color{pinky2}{\frac{1}{12}} & \frac{1}{6} & \frac{1}{4} & \frac{1}{4} & 0 \\ \frac{1}{12} & \frac{5}{24} & \bf\color{pinky2}{\frac{1}{6}} & \frac{1}{4} & 0 & \frac{3}{8} \\ \frac{1}{4} & \frac{1}{8} & 0 & \bf\color{pinky2}0 & \frac{1}{4} & \frac{1}{8} \\ \frac{1}{4} & \frac{1}{8} & \frac{1}{4} & \frac{1}{4} & \bf\color{pinky2}{\frac{1}{4}} & \frac{1}{8} \\ 0 & \frac{1}{3} & \frac{5}{12} & \frac{1}{4} & 0 & \bf\color{pinky2}{\frac{1}{4}} \end{pmatrix} && P^3 = \begin{pmatrix} \bf\color{pinky}{\frac{1}{12}} & \frac{1}{8} & \frac{1}{8} & \frac{3}{16} & \frac{1}{16} & \frac{3}{16} \\ \frac{1}{12} & \bf\color{pinky}{\frac{5}{24}} & \frac{5}{24} & \frac{1}{8} & \frac{1}{12} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{8} & \bf\color{pinky}{\frac{1}{6}} & \frac{3}{16} & \frac{13}{48} & \frac{5}{48} \\ \frac{1}{12} & \frac{1}{8} & \frac{1}{8} & \bf\color{pinky}{\frac{3}{16}} & \frac{1}{16} & \frac{3}{16} \\ \frac{1}{6} & \frac{1}{4} & \frac{1}{4} & \frac{3}{16} & \bf\color{pinky}{\frac{3}{16}} & \frac{3}{16} \\ \frac{1}{3} & \frac{1}{6} & \frac{1}{8} & \frac{1}{8} & \frac{1}{3} & \bf\color{pinky}{\frac{1}{6}} \end{pmatrix} \end{align} \]
- \(P^2_{11} \neq 0\) and \(P^3_{11} \neq 0\), so the periodicity of index \(1\) is \(\gcd(2, 3) = \bf 1\)
- \(P^2_{22} \neq 0\) and \(P^3_{22} \neq 0\), so the periodicity of index \(2\) is \(\gcd(2, 3)= \bf 1\)
- \(P^2_{33} \neq 0\) and \(P^3_{33} \neq 0\), so the periodicity of index \(3\) is \(\gcd(2, 3)= \bf 1\)
- \(P^3_{44} \neq 0\), and \(P^4_{44} \neq 0\), so the periodicity of index \(4\) is \(\gcd(3, 4)= \bf 1\)
- \(P^2_{55} \neq 0\) and \(P^3_{55} \neq 0\), so the periodicity of index \(5\) is \(\gcd(2, 3)= \bf 1\)
- \(P^2_{66} \neq 0\) and \(P^3_{66} \neq 0\), so the periodicity of index \(6\) is \(\gcd(2, 3)= \bf 1\)
Hence, the transition matrix \(P\) is transitive and aperiodic.
Steady State Probabilities
The probability vector gives the probability of a web user arriving at a website after an infinite number of browser moves. This vector should satisfy \(P \pi = \pi\); in other words \(\pi\) is an eigenvector of \(P\) for the eigenvalue \(1\).
Theorem (Fundamental Theorem of Markov Chains). If \(P\) is an \(n \times n\) regular stochastic matrix, then \(P\) has a unique positive steady-state vector \(\vec{q}\). Further, if \(\vec{x}_0\) is any initial state and \(\vec{x}_{k+1} = P\vec{x}_k\), then over time \(\vec{x}_k\) converges to \(\vec{q}\) if, in the sense that \(\lim \vec{x}_k = \vec{q}\).
The transition matrix \(P\) is a regular stochastic matrix, so the Fundamental Theorem of Markov Chains applies. We just need to find the probability vector \(\vec{q}\) so that \(P\vec{q} = \vec{q}\). The unique probability vector in the eigenspace of \(\rho(P) = 1\) is spanned by: \[\vec{\mathbf v} = \begin{bmatrix} \frac{11}{18} & \frac{19}{27} & \frac{47}{54} & \frac{11}{18} & \frac{53}{54} & 1 \end{bmatrix}^{\color{purpley}{\top}}\]
Frobenius’ Theorem. Let \(A\) be a nonnegative matrix and \(\mathit{III}\) be a matrix of all \(1\)s. Then \(\forall \ m \in \mathbb{N}\), the matrix \(A + \frac{1}{m} \mathit{III} \gt 0\). Therefore for each \(m\), the matrix \(A + \frac{1}{m} \mathit{III}\) has a positive dominant eigenvalue \(\rho_m\) with a positive corresponding eigenvector \(v_m\). By dividing by the sum of the entries, we may assume each \(v_m\) is a probability vector. Consequently, \(\rho = \lim_{m\rightarrow \infty}(\rho_m)\) exists and is equal to the spectral radius of \(A\), and \(\lim_{m\rightarrow \infty}(V_m) = v\) exists such that \(v \gneqq 0\) is an eigenvector for the eigenvalue \(\rho\).
Take a scalar multiple of \(\vec{\mathrm v}\) to make it a probability vector by letting \({\mathbf c} = {\left(\tfrac{11}{18} + \tfrac{19}{27} + \tfrac{47}{54} + \tfrac{11}{18} + \tfrac{53}{54} + 1\right)}^{-1} = \tfrac{9}{43}\). Then we can calculate the unique positive steady-state vector as:
\[ {\large\color{bluemoon} \vec{\mathbf q}} = {\large\mathrm{c} \times {\bf \vec{v}}} = {\color{purpley} \frac{9}{43}} \times {\begin{bmatrix} \ \frac{11}{18}\ \\ \frac{19}{27}\\ \frac{47}{54}\\ \frac{11}{18}\\ \frac{53}{54} \\ 1 \end{bmatrix}} \ \equiv \ {\begin{bmatrix} \frac{11}{86}\\ \frac{19}{129}\\ \frac{47}{258}\\ \frac{11}{86}\\ \frac{53}{258}\\ \frac{9}{43} \end{bmatrix}} \equiv \small \begin{bmatrix}0.1279 \\ 0.1473 \\ 0.1822 \\ 0.1279 \\ 0.2054 \\ 0.2093 \end{bmatrix} \]
Hence, the unique positive steady-state vector is \(\vec{\mathbf q} \equiv \begin{bmatrix}0.1279 & 0.1473 & 0.1822 & 0.1279 & 0.2054 & 0.2093 \end{bmatrix}^{\mathbf \top}\). In general, a Markov chain with an irreducible and ergodic transition matrix has \(\lambda = 1\) to be the largest eigenvalue, and its corresponding unique eigenvector is \(\pi\). In addition, both the algebraic and geometric multiplicity of \(\lambda = 1\) equals \(1\).
Transitive and Aperiodic Matrices
1. Show that the following matrix is transitive and aperiodic.
Let matrix \[A = {\begin{matrix}\bf\color{navy}1 \\ \bf\color{navy}2 \\ \bf\color{navy}3 \\ \bf\color{navy}4 \\ \bf\color{navy} 5 \end{matrix}} \begin{pmatrix}0 & 2 & 0 & 0 & 3\\0 & 0 & 4 & 0 & 0\\0 & 0 & 0 & 2 & 0\\0 & 8 & 0 & 0 & 6\\4 & 0 & 0 & 0 & 0\end{pmatrix}.\]
Definition 3.2. Let \(A\) be a nonnegative \(n\times n\) matrix. We say that \(A\) connects \(j\) to \(i\) directly if \(a_{ij}\neq 0\), and we say that \(A\) connects \(j\) to \(i\) if for some \(k, A^k\) connects \(j\) to \(i\) directly. We say that \(A\) is transitive if for every pair \((i,j)\), \(A\) connects \(i\) to \(j\).
Observe that for row \(1\), there are nonzero entries for \(a_{12}\) and \(a_{15}\), which means we can trace vertex \(\bf 1\) to vertex \(\bf 2\) and vertex \(\bf 5\) as follows: \(\bf (1) \longrightarrow (2)\) and \(\bf (1) \longrightarrow (5)\). Similarly, for row \(2\) there is a nonzero entry for \(a_{23}\) which means we can trace vertex \(\bf 2\) to vertex \(\bf 3\). Row \(3\) has a nonzero entry for \(a_{34}\) which means we can trace vertex \(\bf 3\) to vertex \(\bf 4\). Row \(4\) has nonzero entries for \(a_{42}\) and \(a_{45}\) which means we can trace vertex \(\bf 4\) to vertex \(\bf 2\) and vertex \(\bf 4\) to vertex \(\bf 5\) as follows. Lastly, row \(5\) has a nonzero entry for \(a_{51}\) which means we can trace vertex \(\bf 5\) to vertex \(\bf 1\). Thus, all of the edges connecting these vertices is as follows: \(\left\{\bf (1) \longrightarrow (2)\right\}\), \(\left\{\bf (1) \longrightarrow (5)\right\}\), \(\left\{\bf (2) \longrightarrow (3)\right\}\), \(\left\{\bf (3) \longrightarrow (4)\right\}\), \(\left\{\bf (4) \longrightarrow (2)\right\}\), \(\left\{\bf (4) \longrightarrow (5)\right\}\), and \(\left\{\bf (5) \longrightarrow (1)\right\}\).
The matrix \(A\) is aperiodic if each index \(j\) with \((A^m)_{jj}\) has periodicity \(1\). Computing the greatest common divisor of all the return times:
- \(P^4_{11} \neq 0\) and \(P^5_{11} \neq 0\), so the periodicity of index \(1\) is \(\gcd(4, 5) = \bf 1\)
- \(P^5_{22} \neq 0\) and \(P^6_{22} \neq 0\), so the periodicity of index \(2\) is \(\gcd(5, 6)= \bf 1\)
- \(P^5_{33} \neq 0\) and \(P^6_{33} \neq 0\), so the periodicity of index \(3\) is \(\gcd(5, 6)= \bf 1\)
- \(P^5_{44} \neq 0\), and \(P^6_{44} \neq 0\), so the periodicity of index \(4\) is \(\gcd(5, 6)= \bf 1\)
- \(P^4_{55} \neq 0\) and \(P^5_{55} \neq 0\), so the periodicity of index \(5\) is \(\gcd(4, 5)= \bf 1\)
Hence, the transition matrix \(P\) is transitive and aperiodic.
Next, divide each entry by the sum of the entries in its row in order to get each row of the matrix to sum to \(1\):
\[ \small P = \begin{pmatrix}0 & \frac{2}{2 + 3} & 0 & 0 & \frac{3}{2 + 3}\\0 & 0 & \frac{4}{4} & 0 & 0\\0 & 0 & 0 & \frac{2}{2} & 0\\0 & \frac{8}{8 + 6} & 0 & 0 & \frac{6}{8 + 6}\\\frac{4}{4} & 0 & 0 & 0 & 0\end{pmatrix} \equiv \begin{pmatrix}0 & \frac{2}{5} & 0 & 0 & \frac{3}{5}\\0 & 0 & 1 & 0 & 0\\0 & 0 & 0 & 1 & 0\\0 & \frac{8}{14} & 0 & 0 & \frac{6}{14}\\ 1 & 0 & 0 & 0 & 0\end{pmatrix} \equiv \begin{pmatrix} 0 & .4 & 0 & 0 & .6 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & .57 & 0 & 0 & .43 \\ 1 & 0 & 0 & 0 & 0 \\ \end{pmatrix} \]
and hence the matrix \(P\) is row stochastic.
References
[1] Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J., Terrel, A. R., Roučka, Š., Saboo, A., Fernando, I., Kulal, S., Cimrman, R. and Scopatz, A. (2017). SymPy: Symbolic computing in Python. PeerJ Computer Science 3 e103.
[2] Wikipedia contributors. (2021). PageRank Wikipedia, the free encyclopedia.
[3] Lay, D. C., Lay, S. R. and McDonald, J. (2016). Linear algebra and its applications. Pearson, Boston.
[4] Peretti, A., Roveda, A. and others. (2014). On the mathematical background of Google PageRank algorithm.